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The human brain is topographically organized Interpreting the emergent topography

iy, Test Suite Category Example
= L + A Luw -
e . Intactness Intact She scored 2 goals in the soccer game.
Topographlc vision models have begun to explaln the Scrambled Soccer scored game. the She in 2 goals.
functional organization of the visual cortex _ | Animacy Animate The gnu galloped across the savanna, majestic and swift.
[l Inanimate The oven’s warm glow promised delicious, freshly baked bread.
S Concreteness | Concrete She peeled the banana slowly, savoring its sweet, ripe aroma.
& Retihotapy b curvature € Color d Realworldsize @ Animacy f Catedories = Abstract Her motive for volunteering was purely altruistic and kind.
!.S ' S - Visuomotor Visual To solve problems, I often visualize them in my mind.
PHC-2 S Motor His grip on the rope tightened as he climbed higher.
\ PHC ! 5 Semantic Acceptable A sunflower has yellow petals.
.\i ¥o-2 £ Acceptability
!3/; 5\‘3/)41 : oo docoding (om0 1 "o Unacceptable | A peanut has yellow petals.
E " — | Agreement Matched The authors that hurt the senator are good.
_ g Z:J | " Mismatched The authors that hurt the senator is good.
Fovea  Periphery PCA on curvature Places Color Faces Smallvs Animals vs. Objects Fai;::rds Obj:clisces ;f 014‘ ” " = llé LicenSing Matelica The authors that liked the senator hurt themselves.
' ' ¢ ool o 8 5 Mismatched The authors that liked the senator hurt himself.
Arcaro & Livingstone, 2024 E o0 | [ § 7 | Garden-Path | Ambiguous As the criminal shot the woman with her young daughters yelled at the
g 0] v 04 E x top of her lungs.
@ @ . g ob 9s i - g £ Unambiguous | As the criminal fled the woman with her young daughters yelled at the
_ Internal. I’epresentatIOnS Of e.g. Interactive Topographic Network 5‘ _ tOp Of her lungs.
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ramingsgih)  anmgpeiTH)  traning e Transformer large language Table 2: Overview of test suites with sentence examples. Each test suite had 38 sentences in each
Neural Mechanisms models (LLMS) can pI‘EdICt human category, for a total of 76 sentences in each suite.
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Adding topographic priors to self-attention
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Figure 3: Selectivity-based interpretation of topographic organization in Topoformer-BERT.
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Spatlal Queryl ng Spatla" Rewelghtl ng Ao PLS-SVD finds shared dimensions between language-selective brain voxels and Topoformer model units.

Figure 1: Spatial querying and reweighting operations in the “Topoformer e e i keswiiis
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Model training and evaluation

e Train a single-head 16-layer Topoformer BERT model with Masked Language Modeling
objective following Geiping and Goldstein's (2022) training paradigm on the

- 0.02

0.00

- —0.02

Bookcorpus-Wikipedia dataset. N
- It has a light tangy flavor.
Alignment is determined by correlating dimension scores computed on held-out sentences
e Evaluate task performance on the GLUE benchmark. | nobaligned Where are you keeping it safe?
O 401 = % o e e r=0.001 . .
BERT Model | MNLI | SST-2 | STSB | RTE | QNLI | QQP | MRPC | CoLA | GLUE £ £ Ex It meant waving a white flag.
multihead 83.0/83.2 91.6 384.8 54.7 88.5 86.9 86.4 43.7 78.1 SVDweightsare & o] 2 a0 g The last time we'd had four.
ted f S S S o
[head | 81.1/81.5 | 90.0 | 82.1 | 512 | 87.6 | 86.7 | 848 | 475 | 769 s : - :
Topoformer | 80.1/80.1 90.9 75.1 512 | 86.6 86.0 81.5 46.3 75.31 e . 3 3
Table 1: Comparison of GLUE performance between non-topographic BERT control models and o] ——————— T A B > S h B B 3
Topoformer—BERT Topoformer layer 15 (keys) dim-0 Topoformer layer 15 (keys) dim-1 Topoformer layer 15 (keys) dim-2 .
Participant 1 language-selective voxel weights \ sentence_1000 J

Visualizing topography

characterize topography at multiple spatial scales

Lee et. al, 2020
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Quantification of topography in all layers of Topoformer-BERT
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Figure 4: Alignment of topographic representations in the human language network and Topoformer-BERT model.
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Conclusions and future directions

e Topoformers allow for modeling of topographic organization of linguistic representations.
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e Low-dimensional variability can be aligned in the topographic representations of the
human language network and Topoformer language model.

Layer number

Figure 2: Topographic organization cross all layers of Topoformer-BERT.
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e Topoformers hold great promise for improved interpretability of LLMs and brains, and can
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